Expalin Law of Rational indices
This Law states that the intercepts of any face of a crystal
along the crystallographic axes are either equal to the unit intercept (a, b,
c) or some simple whole number multiple of them, e.g., na, n’b, n’’c, etc. where
n n’ n’’ are simple whole numbers.
Let OX OY and OZ represents the three crystallographic axes
and let ABC be a unit plane. The unit intercepts will then be a b c.
According to the above law the intercepts of any face such as KLM, on the same three axes will be simple whole number multiple of a b and c respectively. As can be seen from figure.
According to the above law the intercepts of any face such as KLM, on the same three axes will be simple whole number multiple of a b and c respectively. As can be seen from figure.
No comments